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Abstract We consider one dimensional systems of particles interacting with each other
through long range interactions that are translation invariant. We seek quasi-periodic equi-
librium states.

Standard arguments show that if there are continuous families of quasi-periodic ground
states, the system can have large scale motion, if the family of ground states is discontinuous,
the system is pinned down. The transition between the two cases is called breakdown of
analyticity and has been widely studied.

We use recently developed fast and efficient algorithms to compute all the continuous
families of ground states even close to the boundary of analyticity. We show that the bound-
ary of analyticity can be computed by monitoring some appropriate norm of the computed
solutions.

We implemented these algorithms on several models. We found that there are regions
where the boundary is smooth and the breakdown satisfies scaling relations. In other regions,
the scalings seem to be interrupted and restart again. We present a renormalization group
explanation of these phenomena. This suggest that the renormalization group may have
some complicated global behavior.
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1 Introduction

The phenomenon of breakdown of analyticity, appears in a multitude of physical contexts,
see next section (dynamical systems, dynamics of fracture, deposition over a substrate,
magnetism, quasi-periodic Schrödinger equations, etc.) and has a variety of physical im-
plications. It has, therefore been widely studied by a variety of methods from numerical
exploration to rigorous mathematical results. See [1–7] and their references among others.

We will be considering one-dimensional discrete models, which appear naturally as mod-
els of dislocation planes in crystals in solid state physics [8] and in other contexts.

We are seeking configurations {xn}n∈Z which are equilibria of a variational problem (see
next section) and which are determined by a hull function. That is, xn = h(nω) where h(t +
1) = h(t) + 1. In [2] it is shown that, under some convexity properties, all the ground states
are of this form. The parameter ω has the physical interpretation of the inverse of a density
and it is, therefore, natural considering it fixed.

When the system depends on parameters, it is often observed that the function h is
smooth for some values of the parameters and it is discontinuous for others. It is shown
in [2] that when h is continuous, the system can easily move among equilibria, but when
h is discontinuous, the system is pinned down. In many examples, depending on the para-
meters, we can find both behaviors and the boundary between the two cases—the boundary
of mobility or the boundary of transport—has been widely studied by physicists. In the
mathematics literature, some particular models of the type considered here, appear as twist
mappings and the breakdown of analyticity is precisely the breakdown of KAM tori.

The goals of this paper are to present an efficient algorithm to compute the breakdown of
analyticity transition and to present the results obtained by applying it to Frenkel-Kontorova
models (both with non-nearest neighbor interactions and long range interactions) or to
Heisenberg XY models of magnetism. We also present a renormalization group explanation
of the results. The numerical algorithms used in this paper have been justified mathemati-
cally in [9].

We note that the Frenkel-Kontorova model with nearest neighbor interactions is pre-
cisely the standard map in dynamical systems. Nevertheless, some of the models that we
consider (e.g. the Frenkel-Kontorova model with long range interactions or the Heisenberg
XY model) do not have interpretation as dynamical systems. So that the phenomenon of
breakdown of analyticity is somewhat more general than the phenomenon of breakdown of
KAM tori in twist maps.

The paper [9] contains a short survey of the methods used to compute analyticity break-
down. Most of the methods used previously in the literature were designed for the case of
dynamical systems. Notably, the Greene’s method [1] or the obstruction criterion [10] which
relied on the computation of periodic orbits. The method presented here allows to compute
much more systematically and to explore a wider range of parameters than previously ex-
plored.

We find that, as predicted by the standard renormalization group picture, some regions of
the boundary of analyticity are smooth and we find scaling relations. On the other hand, for
other regions we find that the boundary has corners and that the scaling relations are not so
straightforward. This suggests that the renormalization group has a complicated dynamical
behavior. The possibility that the renormalization group could have an erratic behavior was
suggested in [11]. The present paper gives evidence that this actually happens.

It is not surprising that this complicated behavior of the renormalization group had not
been observed before because standard methods such as the Greene’s method or the ob-
struction criterion rely on being able to guess the position of periodic orbits, which is, in
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turn related to the orderly behavior of the renormalization group [12]. (The complicated be-
havior of the renormalization group manifests itself in that the periodic orbits jump around
dramatically and are hard to follow numerically [13, 14].)

2 Models Considered

In this paper, we will focus on three models, the Frenkel-Kontorova (FK) models, FK models
with long range interactions (EFK) and Heisenberg’s XY model of magnetism.

These models describe an array of atoms, indexed by an integer n. The state of the n atom
is characterized by a real number xn. The configuration is, therefore, given by a sequence
{xn}n∈Z. In the case of the Heisenberg XY model, the physical interpretation of xn is the
orientation of the spin of the n atom. In the original formulation of the FK model [8] xn

was the position of a planar dislocation in a crystal. In [2], the same model was used in the
description of deposition over a substratum. Then, xn is the position of the n deposited atom.
Given the above interpretations of the models, it is natural to include interactions that extend
beyond nearest neighbors [15–18].

The Physics of the model is determined by assigning an energy to each configuration.
The energies we will consider in our numerical experiments are respectively:

EFK =
∑

n

1

2
|xn − xn−1|2 + V (xn) (1)

EXY =
∑

n

cos(2π(xn − xn−1)) + B cos(2πxn) (2)

EEFK =
∑

n

∑

l

1

2
Al |xn − xn−l |2 + V (xn) (3)

In the FK model, the first term models the interactions between nearest neighbors (as-
sumed to be a harmonic oscillator), the second term models the interaction with the substra-
tum given by V (xn) where V (t + 1) = V (t). V will depend on several parameters (coupling
constants). We have chosen units of energy and length to normalize the period of V to 1 and
the coefficient of the harmonic interaction to 1

2 .
In the EFK model we also consider harmonic interactions between non-nearest neigh-

bors.
In the XY model the energy is the sum of the exchange energy among the next nearest

neighbors (it has to be a multiple of the scalar product of the two orientations by rotational
invariance) and the interaction with a external magnetic field. Again we choose units of
energy to normalize the coefficients.

2.1 The Equilibrium Equations

These systems are in equilibrium when ∂xnE = 0 for all n. One particularly important case
of equilibria are ground states, which have smaller energy than any state differing from them
in a finite number of sites.

The equilibrium equations are, respectively:

2xn − xn−1 − xn+1 + V ′(xn) = 0 (4)

sin(2π(xn+1 − xn)) − sin(2π(xn − xn−1)) − B sin(2πxn) = 0 (5)
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∑

l

Al(2xn − xn−l − xn+l ) + V ′(xn) = 0 (6)

Introducing the extra variable pn, (4) can be considered as a dynamical system in two
dimensions so that pn+1 = pn + V ′(xn), xn+1 = xn + pn+1. Therefore, equilibrium configu-
rations for EFK are orbits of celebrated standard map.

Note, however that the interpretation of (6) as dynamical systems is rather difficult since
there is no general way to obtain xn as function of xn−1, xn−2, . . . , xn−k if Al > 0 for all l.
Obtaining xn in (5) involves computing sin−1(sin(2πxn − xn−1) + B sin(2πxn)) which only
makes sense if | sin(2πxn −xn−1)+B sin(2πxn))| ≤ 1, a non-trivial condition. Furthermore,
if this condition is satisfied at one step, it may fail at the next.

We note that, even if the energy is a formal sum, the equilibrium equations are well de-
fined mathematical objects. There are standard definitions to make sense of ground states—
also called class-A minimizers in the mathematical literature—for variational principles
given by formal sums [19].

2.2 Configurations Given by Hull Functions

In many of the systems above, it is useful to study equilibrium configurations given by hull
functions

xn = h(nω), h(t + 1) = h(t) + 1 (7)

In FK, EFK models, ω is the inverse of the density. The equilibrium equations can be
written in terms of the hull functions as:

2h(θ) − h(θ − ω) − h(θ + ω) + V ′(h(θ)) = 0 (8)

sin(2π(h(θ + ω) − h(θ))) − sin(2π(h(θ) − h(θ − ω)) − B sin(2πh(θ)) = 0 (9)
∑

l

Al(2h(θ) − h(θ − lω) − h(θ + lω)) + V ′(h(θ)) = 0 (10)

It was shown in [2] that all ground states of FK models are given by hull functions. The
argument was extended in [20] for EFK models.

Equations (8) were shown to have a variational structure [3, 4], but small modifications
of the argument show that so do (9), (10). The papers [3, 4] showed that this variational
principle is a very useful computational tool. The paper [21], developed a mathematically
rigorous theory of minimizers of the variational principle of [3, 4] which was the beginning
of the celebrated Aubry-Mather (AM) theory. See [20, 22], for a thorough treatment of (10).

The AM theory guarantees the existence of solutions of (8), (10) for all choices of pa-
rameters and all ω. These solutions could be smooth or discontinuous. On the other hand,
(9) does not satisfy the convexity conditions required by AM theory and we do not know of
a theory of existence of solutions to (9) for general values of parameters even if there is a
perturbative theory for small values of B [23, 24].

2.3 The Phenomenon of Analyticity Breakdown

If h, the solution of (8), (9), (10), is continuous, there is a continuous family of critical points
and the system can slide from one to another rather easily. Hence arbitrarily small forces can
cause large effects. On the other hand, if h is discontinuous, there are gaps among the ground
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states and the system is pinned down since jumping would require significant energy. The
above alternative (pinned down or sliding) depends on the parameters of the system.

The problem we want to address here is how to compute the regions of parameters where
the solution of (8), (9), (10) are smooth or discontinuous.

3 Perturbative Results

When ω is sufficiently irrational, i.e., it satisfies the following Diophantine condition

|ω − p/q| ≥ κ|q|−τ ∀p ∈ Z, q ∈ Z − {0} (11)

there is a perturbative theory for smooth solutions, often known as the KAM (Kolmogorov-
Arnold-Moser) theory (see [25] for a review). Extensions to variational problems were ob-
tained in [26, 27] and, for systems with long range interaction in [9, 23]. In contrast with AM
theory, the KAM theory requires that the frequencies are sufficiently irrational and that cer-
tain quantitative assumptions hold. On the other hand, KAM theory requires less convexity
assumptions than AM theory.

The core of [9, 23] is an iterative method that, given an approximate solution of (8),
(9), (10), produces a significantly more approximate solution (the number of correct figures,
roughly doubles at each step).

Given the Fourier coefficients of h obtained by solving either (8), (9) or (10) up to an
error e, there is a explicit correction � such that

1. h + � reduces the error to O(e2),
2. � is computed from h in O(N logN) operations using only O(N) storage,

where N is the number of coefficients used to discretize h.
Omitting some technical assumptions of a mathematical nature, the main result of [9, 23]

is the following:

Theorem 1 Consider (8), (9), (10) with V analytic. Assume also that ω satisfies the Dio-
phantine condition (11).

Assume that h satisfies the invariance equation up to an error e in place of 0 in the RHS.
Assume that for some r large enough, ‖e‖r ≡ (

∑
n(1 + k2)r |êk|2)1/2 is sufficiently small

compared to ‖h‖r .
Then, the iterative step started in the approximate equation converges to an analytic

solution of the invariance equations which is close to the original one (in a Sobolev norm as
above).

Note that Theorem 1 can be used to justify the numerical computations. We can take as
an approximate solution the function produced by the computer. If the error of the invariance
equation is small enough with respect to ‖h‖r , we can be confident that we are producing
something close to a true solution. This is invaluable when we are trying to approach val-
ues where the true solutions cease to exist. Then, one can take appropriate measures (e.g.
increase the number of discretization points) or indicate that the computation has to stop.

Having some criterion that asserts the reliability of the computation is crucial when we
are trying to compute reliably close to the boundary. It is found empirically that close to the
boundary of existence there are many spurious solutions which can confuse sloppy methods.
As it is well known by mathematicians, the smooth KAM tori, when they break down, leave
Cantor tori, which may be confused with a KAM torus since they are rather dense.
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4 Algorithm for the Computation of the Analyticity Breakdown

Theorem 1 leads immediately to the following algorithm.

Algorithm 1

Choose a path in the parameter space starting from the integrable case.
Initialize the parameters at integrable, hε0

Repeat
Increase the parameters along the path
Run the iterative step
If (Iterations do not converge)

Decrease the increment in parameters
Else (Iteration success)

Record the values of the parameters and the Sobolev norm of the solution
Until Sobolev norm too large

The ending point of the algorithm is the computed critical value.
To compute the domain of analyticity, one just needs to study several paths that scan dif-

ferent directions (take care of overhangs). Of course, if there are several processors or cores
available, it is trivial to give the task of following different paths to different processors, so
that the computation is very parallelizable.

Note that Algorithm 1 is at heart a very standard continuation method and that there are
no bifurcations and only moderate condition numbers until the breakdown. Hence the con-
tinuation does not require any delicate tuning of choices of where to find auxiliary objects.

Note that Theorem 1 shows that there will be an analytic solution in a neighborhood
unless the Sobolev norm blows up. After a calculation, one can check that the choice of
threshold for blow up does not affect much the final result. More accurate results can be
obtained by fitting some formula for the blow up.

It is interesting to compare the above criteria with other methods. The best known method
[1] is based on the computation of periodic orbits which approximate the periodic solution.
On the other hand, when V contains several harmonics, tracking periodic orbits becomes
hard close to breakdown since they appear in complicated orders [14]. The formulation of
the criterion in [1] does not seem clear in cases such as (10) where one cannot make sense of
the residue. Another algorithm based on periodic orbits and their stable manifolds appears in
[10]. Other algorithms based on variational methods for twist mappings are [28–30], but this
do not generalize to (9), (10). A more systematic comparison between algorithms appears
in Appendix B of [9].

5 Renormalization Group Explanation

5.1 The Standard Scenario of Breakdown

Since the 60’s one of the most important technical tools to discuss phase transitions has
been the renormalization group and the theory of scaling exponents [11, 31, 32]. It seems
clear that the breakdown of analyticity transition shares several features with many of the
standard phase transitions. In the dynamical systems context this has been documented in
[33–37].
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The easiest description of phase transitions is that there is a renormalization operator in
the (infinite dimensional) space of interactions which describes one scale in terms of longer
scales (in statistical mechanics one sometimes does the opposite). Hence, the asymptotic
behavior of the renormalization group operator, gives information of the very short scale
(i.e. the differentiability properties) of the functions considered.

For example, the standard picture of the breakdown of analyticity [35] is as follows:
In a neighborhood of the non-trivial fixed point, the maps on one side go to a trivial fixed

point. Convergence of long iterations of renormalization to a trivial fixed point implies that
the original map had an analytic invariant circle. Convergence to the non-trivial fixed point
implies that there is an invariant circle but that it is not analytic. This part of the picture has
been established rigorously in [36, 38–40].

On the other side of the stable manifold of the fixed point, there are very detailed conjec-
tures on the behavior of renormalization group [12] which imply that there are no invariant
circles, but rather uniformly hyperbolic Cantor sets. These conjectures have not been proved
but [12] included supporting numerical evidence.

In should be emphasized that this standard picture is only meant to hold in a neighbor-
hood of the non-trivial fixed point.

In the following, we will indicate how the computations presented above, fit into this
standard picture and how they suggest that the renormalization group has some dynamically
complicated behavior.

5.2 Scaling Predictions of the Standard Scenario

First of all, we indicate that the standard renormalization picture predicts some behaviors
which are consistent with some of the behaviors we found numerically.

The standard scenario predicts that in a neighborhood of the non-trivial fixed point:

(P1) For a generic family, the set of parameters experiencing analyticity breakdown, is a
smooth codimension 1 surface.

(P2) There are scaling exponents for Sobolev (and Cr ) norms of the hull function. The
exponents are affine functions of the order of the Sobolev exponents.

The reason for (P1) is clear: The set of models experiencing analyticity breakdown is a
codimension 1 manifold, which will be intersected by a generic family in a codimension 1
set. Generically, the intersection will be a smooth set since it will be transversal.

The reason for (P2) is more sophisticated and indeed, gives a very explicit expression for
the linear coefficient of the blowup exponent in terms of the index of the Sobolev space.

We note that the renormalization consists in considering an iterate of the map and scaling
in space. The application of renormalization close to breakdown implies that the parameters
scale.

Therefore, denoting by ε̃ = εc − ε, where εc is the critical value of the parameter we
expect that

hδε̃(θ) ≈ ηhε̃(σθ)

where δ is the unstable exponent of the renormalization fixed point, σ is a number theoretic
number that indicates how fast the iterates considered in the renormalization are converg-
ing to the frequency (e.g. for golden mean frequency, when the convergents are Fibonacci
numbers, we obtain σ = 1

2 (
√

5 + 1) ≈ 1.6180339887 . . . .
The value of δ is well known to be [35, 37] δ ≈ 1.6280 . . . .
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Fig. 1 Domain of ε1, ε2, for
which the model (1) with
potential
V (x) = − ε1

(2π)2 cos(2πx) −
ε2

(4π)2 cos(4πx) has an invariant

circle of rotation golden mean

Fig. 2 Neighborhoods of
existence of invariant circles for
the model (1) with Al = 1

l2
,

ω =
√

5−1
2 , and potential

V (x) = − ε1
2π

cos(2πx) −
ε2
4π

cos(4πx) − 0.3
6π

cos(6πx) in
the parameter space (ε1, ε2)

If this scaling were true, the Sobolev semi-norms of h would satisfy

F 2
r (δε̃) ≡

∫
Drhδ(ε̃)(θ)2 dθ ≈

∫
η2σ 2rDrhε̃(θσ )2 dθ = η2σ 2r−1F 2

r (ε̃)

This corresponds to

Fr(ε̃) ≈ ε̃
logσ
log δ

(r− 1
2 + logη

logσ
) = ε̃0.98740...(r−E) (12)

6 Numerical Results

We implemented the continuation method prescribed by Algorithm 1 using the methods
introduced in [24]. In this section, we present some numerical results.

In Fig. 1 we present the set parameters ε1, ε2 for which there is a function, h(ε1,ε2) for

ω =
√

5−1
2 , for the model (1) with potential V (x) = − ε1

(2π)2 cos(2πx) − ε2
(4π)2 cos(4πx).

In Fig. 2 we present the neighborhood of existence of invariant tori for the model (3)
with Al = 1/lk and potential V (x) = − ε1

2π
cos(2πx)− ε2

4π
cos(4πx)− 0.3

6π
cos(6πx) and ω =
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Fig. 3 Critical values computed
monitoring the blow up of
different Sobolev norms as a
function of the order r

Fig. 4 Doubly logarithmic scale
plot of ‖hε − Id‖4 with respect
to (1 − ε/εcrit )

−1 for models (1)
with V (x) = − ε

(2π)2 cos(2πx)

and (2) with B = − ε

(2π)2

√
5−1
2 . Note that this model has infinite range and that the interactions decrease very slowly.

This is the critical case of the hierarchical models [41, 42].
In Fig. 3, we plot the critical values of ε obtained from a direct fit of (12) for different

values of r and for different values of the coupling constant for non-nearest neighbor inter-
actions in the EFK model. We see that the values obtained are very approximately constant
and independent of the value of r .

6.1 Numerical Evidence Near the Non-trivial Fixed Point

As for (P1) we indicate that the regions in Fig. 1 where the curve is smooth are apparent
by visual inspection. More detailed magnifications—consistent with the precision of the
calculations—also confirm that.

As for the more delicate and quantitative prediction (P2), in Fig. 4, we present a doubly
logarithmic plot of ‖hε − Id‖4 for the XY and FK models. The linear behavior is apparent.
We have found similar behavior in many other cases.

In Fig. 5, we plot the Blow-up exponents of Fr as a function of r for the EFK model for
different values of A2. We can see that the behavior fits very well the formula (12) and that
the slope seem to be independent of A2.
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Fig. 5 Exponents of blow-up of
Sobolev norms as a function of
the regularity r for several values
of the coefficient A2 in the EFK
model

Fig. 6 ‖hε − Id‖4 with respect
to ε for model (1) with
V (x) = − ε

(2π)2 (cos(2πx) +
√

2−1
4 cos(4πx))

6.2 Evidence of Behavior Beyond the Standard Scenario

Figure 1 presents obvious cusps in the ε2 axis. This is just an artifact of the parameterization.
The maps corresponding to ε1 and −ε1 are just the same map in different coordinates.

On the other hand, we have magnified regions A and B where there is genuinely compli-
cated geometry of the domain of analyticity. There seems to be an accumulation of cusps. If
one follows one of the paths in this region (see Fig. 6) one can see that the norm has a very
erratic behavior. It switches from growing to decreasing several times before blowing up.

In the renormalization group interpretation, the boundary of analyticity is the stable man-
ifold of the non-trivial fixed point. Hence, the numerical evidence has to be interpreted as
saying that the stable manifold has a complicated behavior. The computation in Fig. 1 indi-
cates that the stable manifold doubles back on itself. The computation performed in Fig. 6
indicates that a smooth path approaches and then moves away from the boundary. Again,
this can only happen if the stable manifold doubles back on itself. Therefore, we conclude
that the stable manifold of the non-trivial fixed point contains several folds.

The standard dynamical systems mechanism to have manifolds doubling on themselves
is the appearance of homoclinic intersections and indeed, the magnifications of Fig. 1 are
visually strikingly similar to the sections of homoclinic tangles.
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Hence we think that the observations are consistent and indeed suggest that the renormal-
ization group operator has a horseshoe. We note that [43] also has other evidence supporting
the existence of horseshoes in the renormalization dynamics.
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